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2 Institut für Theoretische Physik, Universität Bern, Sidlerstr. 5, 3012 Bern, Switzerland

Received: 5 September 2003 /
Published online: 20 November 2003 – c© Springer-Verlag / Società Italiana di Fisica 2003

Abstract. We derive the renormalization group equations for a generic non-renormalizable theory. We show
that the equations allow one to derive the structure of the leading divergences at any loop order in terms
of one-loop diagrams only. In chiral perturbation theory, e.g., this means that one can obtain the series
of leading chiral logs by calculating only one-loop diagrams. We discuss also the renormalization group
equations for the subleading divergences, and the crucial role of counterterms that vanish at the equations
of motion. Finally, we show that the renormalization group equations obtained here apply equally well
also to renormalizable theories.

1 Introduction

Quantum field theories (QFT) which are used in phe-
nomenology are tested up to a limited level of precision and
in limited ranges of energies. In their formulation and ap-
plication one does not need to worry about if and how the
theory has to be modified once certain boundaries in energy
(or precision) are crossed: in such cases one usually speaks
of effective field theories. The property of renormalizability
of such quantum field theories is conceptually not particu-
larly relevant1 – at most one can work out predictions to an
interesting level of precision using only the renormalizable
part of the interaction Lagrangian. The latter is the case
of the standard model, where the level of precision which
has been reached without need for new non-renormalizable
interactions has become surprisingly high.

In renormalizable quantum field theories one of the
most useful tools is that of the renormalization group
equations (RGE). After the renormalization procedure, the
coupling constants which define the theory acquire a de-
pendence on an arbitrary energy scale. It is convenient to
identify the latter with the typical energy scale of the pro-
cess under consideration – the strength of the interaction
then varies with the energy at which this occurs. The RGE
dictate how the coupling constants depend on the scale,
and are one of the most important intrinsic properties of
a quantum field theory. As is well known, the discovery of
the property of asymptotic freedom for non-abelian gauge
theories was a major breakthrough and showed that such
theories could be candidates for describing the observed
behavior of hadrons in deep inelastic scattering, which then
led to the formulation of QCD.

1 This is the point of view of many modern textbooks on
quantum field theories. See, e.g., [1, 2]

The use of the RGE in non-renormalizable QFT has not
received the same attention, and has not yet been studied
thoroughly. On the one hand this may be due to the dif-
ferent use of non-renormalizable QFT, where one usually
does not have the problem of evolving coupling constants
over order of magnitudes in energy scales. On the other
hand, the very structure of the RGE in the case of non-
renormalizable QFT is a lot more complicated than for
renormalizable ones. One of the very first investigations
of this issue was made by Weinberg [3], in his seminal pa-
per on the effective Lagrangians. There he shows how one
can follow the same reasoning that leads to the RGE for
renormalizable theories to obtain information about the
structure of the two-loop divergences in chiral perturba-
tion theory (CHPT). He does not attempt, however, to
push the analysis to higher orders. This is the aim of the
present paper.

What is the physical information one would like to
obtain from such an analysis? To illustrate the answer let
us consider, for example, the expansion of the pion mass
in quark masses [6]:
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where M2 = 2〈q̄q〉m̂/F 2 is the Gell-Mann–Oakes–Renner
term, and F the pion decay constant in the chiral limit. We
have stopped the expansion at the next-to-next-to-leading
order, and at this order have written down explicitly only
the double chiral logarithm. Indeed, what we want to show
here is that the coefficient of the single (double) chiral
logarithm at order M4 (M6) is a pure number, and does
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not involve any of the new coupling constants that show up
at each order in the chiral expansion. It follows from simple
power counting that this remains true to all orders: the
coefficient of the leading chiral log at any order in the chiral
expansion is a pure number. The analysis of Weinberg [3]
concerned precisely the coefficient of the double chiral log:
he showed that, although in principle that coefficient is
the sum of contributions of several different loop diagrams,
its value is constrained by the RGE, and can in fact be
obtained from one-loop diagrams only [6]. Since the leading
chiral log is potentially the dominating correction at each
chiral order (this statement is of course µ-dependent, and
typically valid for values of µ around 1 GeV), the RGE do
provide information of phenomenological interest. If one
were able to sum the whole series of the leading chiral logs
with the help of the RGE, this would certainly be a very
useful and exciting result.

Analogous statements are true for any observables,
and indeed one can obtain the complete expression of the
double chiral logs from the RGE in the generating func-
tional [8], in the formulation of CHPT with external fields
which is due to Gasser and Leutwyler [4]. The validity of
the RGE at the two-loop level has then been explicitly
verified in [9] in the full two-loop calculations of the di-
vergence structure of CHPT. The extension of these RGE
arguments to higher orders has however not yet been made
in the framework of CHPT.

The RGE in a non-renormalizable QFT have been stud-
ied for the case of the non-linear σ-model in two dimen-
sions [14, 15]. This low-dimensional QFT is particularly
interesting because, on the one hand, if one does not spec-
ify the metric of the manifold on which the fields live, it is
non-renormalizable. But on the other hand, the structure
of the possible counterterms is severely constrained: only
two space-time derivatives of the fields can appear, such
that the counterterms can always be absorbed in a redefi-
nition of the metric. As was shown by Friedan [14] one can
write down the RGE for the metric, which do imply inter-
esting constraints on the form of the leading divergences
at higher orders in the loop expansion. This was further
analyzed and clarified by Alvarez-Gaumé, Freedman and
Mukhi [15], who showed that on the basis of the RGE one
can derive the leading two-loop divergences from purely ge-
ometrical considerations (the Palatini identity). They then
verified that the actual two-loop calculation gave results in
agreement with the RGE. In that paper the RGE for the
leading divergences were derived to all orders (although
in a rather implicit form). A few years later, Kazakov [11]
extended these ideas to arbitrary QFT in four space-time
dimensions. He relied, however, on a specific assumption
on the scaling of the Lagrangian with the renormalization
scale µ (the RGE were derived in dimensional regular-
ization), and the RGE were also given in a very implicit
form, completely analogous to those for the metric in the
2-dimensional non-linear σ-model. As we will show later,
however, this scaling cannot hold in CHPT, and in our
analysis we have had to adopt a different starting point.

The structure of this paper is as follows: in Sect. 2 we
set our notation and derive the implicit form of the RGE.

In Sect. 3 we analyze the RGE for the leading divergences,
first order by order in the loop expansion, and then give
the explicit all-order formula and discuss its meaning. In
Sect. 4 we consider the RGE for the subleading divergences,
and discuss them for the first few orders in the loop ex-
pansion. In Sect. 5 we discuss the role of the counterterms
that vanish at the solution of the equations of motion, in
connection with the role of one-particle-reducible graphs.
In Sect. 6 we show that the RGE we have derived apply
equally well to the case of a renormalizable QFT, and ex-
plicitly discuss the case of the O(N) invariant φ4 theory.
In that framework we can also illustrate the role of the
counterterms that vanish at the solution of the equations
of motion. In Sect. 7 we add a φ6 interaction to the φ4

theory and analyze how the RGE are affected. Finally we
summarize our results in Sect. 8. In the appendices we
discuss the more technical points, and in particular the
derivation of the RGE to all orders.

2 Renormalization group equations

2.1 Notation

A quantum field theory is defined by specifying its classical
action S0 and a series of quantum corrections Si:

S[φ, J ] =
∞∑

n=0

�
nSn[φ, J ] . (2.1)

Each term in the series is a function of a number of fields,
collectively denoted with the symbol φ, and of external
sources J coupled to operators O (which can be either fields
φ or functions thereof). By evaluating the path integral

eiZ[J]/� :=
1
N

∫ ∏
[dφi] eiS[φ,J]/� , (2.2)

one obtains the generating functional Z[J ] of all connected
Green functions of the operators OJ as a power series in �,

Z[J ] =
∞∑

n=0

�
nZn[J ] . (2.3)

In the evaluation of the path integral divergences are gen-
erated: these need to be renormalized in order to have
physically meaningful results. This can be done in the fol-
lowing way. The action S is the integral over spacetime of
the bare Lagrangian which also admits an expansion in a
power series in �

S[φ, J ] =
∫

dxLbare(φ, J) , Lbare =
∞∑

n=0

�
nL(n)bare .

(2.4)
We regularize the theory by working in d spacetime dimen-
sion, and split the bare Lagrangians into a renormalized
and a divergent part:

L(n)bare := µ−εn(L(n) + L(n)div) n ≥ 0 , (2.5)
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where L(n) is the renormalized Lagrangian, ε := 4−d, and
L(n)div n ≥ 1 diverges in the limit ε → 0. All the diver-
gences generated in the calculation of the path integrals
are local (see, e.g. [1]), and can be reabsorbed by properly
defining L(n)div.

The scale µ introduced in (2.5) serves the purpose of
having a renormalized Lagrangian of dimension d for all
�-orders. The reason why this choice is the correct one in
CHPT is explained in Appendix A. In case of a renormaliz-
able Lagrangian other choices would be more appropriate
– on the other hand, the physical content of the RGE does
not depend on this, as we will see in Sect. 6. From now
on we set � = 1. In the framework of CHPT the renor-
malized Lagrangian Ln corresponds to the Lagrangian of
chiral order 2n + 2.

The divergent part of the bare Lagrangian of �-order
n can be written as a sum of poles in ε:

L(n)div :=
n∑

k=1

A
(n)
k ε−k =

n∑
k=1

n∑
l=k

A
(n)
lk ε−k , (2.6)

where after the second equality sign we have expanded the
divergences in terms generated by diagrams with l loops –
obviously a term diverging like ε−k can only be generated
by diagrams with at least k loops. The part of �-order n
of the bare Lagrangian therefore reads

L(n)bare = µ−εn

[
L(n) +

n∑
k=1

A
(n)
k ε−k

]
. (2.7)

The calculation of the divergent coefficients A
(n)
k can be

performed in various different ways, which we need not
specify here. The use of the background field method and
the heat-kernel techniques are particularly convenient in
cases where a local symmetry is present, like for gauge
theories or CHPT. Concrete examples of calculations of
A

(n)
k up to n = 2 for gauge theories and CHPT can be

found in [9, 10], respectively.
At each �-order both the Lagrangian L(n) and the pole

coefficients A
(n)
k can be expanded in a minimal basis of

operators O
(n)
i , i = 1, . . . , Mn:

L(n) =
Mn∑
i=1

c
(n)
i O

(n)
i = �c(n) · �O(n) ,

A
(n)
k =

Mn∑
i=1

a
(n)
k i O

(n)
i = �a

(n)
k · �O(n)

=
n∑

l=k

�a
(n)
lk · �O(n) . (2.8)

For a renormalizable theory Mn is a constant independent
of n, and the minimal basis of operators is the same for
every n, whereas for a non-renormalizable one Mn is a
growing function of n. In the present formalism this is
the only difference between a renormalizable and a non-
renormalizable theory.

2.2 Renormalization group equations

The RGE follow from the requirement that the bare La-
grangians2 (2.7) do not depend on the scale µ:

0 = µ
d
dµ

L(n)bare

= µ−εn

{
−εn

[
L(n) +

n∑
k=1

ε−kA
(n)
k

]

+ µ
d
dµ

L(n) +
n∑

k=1

ε−kµ
d
dµ

A
(n)
k

}
. (2.9)

The µ-dependence of the L(n) will be described by its β-
function, denoted by the symbol B:

µ
d
dµ

L(n) = B(n) + εnL(n) , (2.10)

where the ε-dependence has been explicitly subtracted.
The β-function of a Lagrangian is also expandable in the
set of operators:

B(n) =
Mn∑
i=1

β
(n)
i O

(n)
i = �β(n) · �O(n) , (2.11)

and is defined to be evaluated at d = 4. If we decom-
pose (2.10) into a basis of operators we obtain for each of
the coupling constants c

(n)
i

µ
d
dµ

c
(n)
i = β

(n)
i + εnc

(n)
i . (2.12)

The µ-dependence of the divergent parts A
(n)
k can only

arise through their explicit polynomial dependence on the
coupling constants c

(n)
i . We can therefore rewrite the µ

derivative as

µ
d
dµ

=
∑

n

µ
d�c(n)

dµ
· �∂(n) =

∑
n

[
�β(n) + εn�c(n)

]
· �∂(n)

= ∇ + εNv , (2.13)

where �∂(n) := ∂/∂�c(n), and we have introduced the follow-
ing definitions:

∇ :=
∑

n

∇(n) , ∇(n) := �β(n) · �∂(n) ,

(2.14)
Nv :=

∑
n

nD(n) , D(n) := �c(n) · �∂(n) .

The operator Nv and its eigenvalues have a clear mean-
ing which we are now going to illustrate. We saw above
that every Lagrangian L(j) comes with a factor �

j . Con-
sider a generic object on which the operator Nv will act,
e.g. an A

(n)
k , and more in particular the contribution of a

2 From now on we suppress the superscript r on the renor-
malized Lagrangian
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specific loop graph to it, denoted by G. When acting on a
diagram, the operator D(j) will yield the number nj of ver-
tices coming from the Lagrangian L(j) which are present
in that diagram:

D(j)G := njG . (2.15)

For Nv we therefore get

NvG =
∑

jnjG =: nvG , (2.16)

where nv (called v-order) is the contribution to the �-order
of a diagram G which is coming only from the vertices.
The total �-order of the diagram must be larger or equal
to nv, and the difference between n and nv is generated
dynamically by the nl loops present in that diagram: n =
nv + nl (for nl we will use the term l-order). As already
mentioned above, for a renormalizable theory we would
have nv ≡ 0 and therefore n = nl.

We can now write (2.9) in a very compact form:

B(n) = NlA
(n)
1 , (2.17)

NlA
(n)
k+1 = ∇A

(n)
k , k = 1, . . . , n − 1 , (2.18)

where Nl is the operator that yields the l-order of the
object it acts on, being defined by

Nl := n − Nv . (2.19)

We observe that terms of different l-order in (2.17) and
(2.18) cannot mix with each other. One way to prove
this statement is the following: all the objects appearing
in (2.17) and (2.18) are polynomials in the coupling con-
stants c

(n)
i . Since these identities hold no matter what the

value of these constants is, they must hold for the coef-
ficients of each monomial in the coupling constants. One
can now group together all monomials with the same nv,
which also have the same l-order l = n − nv. This follows
from the fact that the �-order n is constant for all terms
in (2.17) and (2.18).

The RGE can therefore be decomposed into sets of
equations with fixed l-order

B
(n)
l = lA

(n)
l1 , l = 1, . . . n , (2.20)

lA
(n)
lk =

l−k+1∑
l′=1

∇l′A
(n)
l−l′ k−1 , l = k, . . . n, k = 2, . . . , n ,

(2.21)

where the additional index l stands for the loop order, and
where ∇l is defined by

∇l :=
∞∑

n=l

�β
(n)
l · �∂(n) . (2.22)

The boundaries in the sum follow from the trivial obser-
vation that A

(n)
k has l-order ≥ k – the �-order is of course

equal to n.
In order to further manipulate the RGE it is useful to

establish the following simple rules.

(1) B(n) and A(n) can carry any l-order and v-order which
add up to n. The c

(n)
i have by definition Nlc

(n)
i = 0,

Nvc
(n)
i = n. A derivative ∂

(n)
i reduces the v-order of the

object it acts on by n.
(2) With the action of ∇l we differentiate with �∂(n) and
multiply the result with the corresponding �β

(n)
l . The net

change in the �-order n is therefore zero: ∇l increases (de-
creases) the l-order (v-order) of the object it acts on by l:

Nl(∇l1A
(n)
l′k ) = (l1 + l′)∇l1A

(n)
l′k ,

Nv(∇l1A
(n)
l′k ) = (n − l1 − l′)∇l1A

(n)
l2k .

(3) If we have not enough c
(k)
i inside of A

(n)
l′k on which we

can act with the derivatives �∂(n), the ∇lA
(n)
l′k will evaluate

to zero:

∇lA
(n)
l′k = 0 ; ∀l + l′ > n .

The above statements are valid also for products of ∇l if
we substitute

∇l → ∇l1∇l2 . . .∇lk , l → l1 + l2 + . . . + lk . (2.23)

3 RGE for the highest poles

In this section we analyze in detail the RGE (2.21) for the
highest poles (HPRGE) k = n and write them in a more
compact form. Before getting to the final result for generic
n, we find it instructive to examine a first few explicit cases
starting from n = 1.

3.1 RGE for n = 1, 2 and 3

At lowest �-order the RGE are practically trivial:

B
(1)
1 = A

(1)
11 , (3.1)

and they only state that the scale dependence of the cou-
plings in the L1 Lagrangian is determined by the one-
loop divergences [3–5].

At the two loop level the equations become more in-
teresting, as has been already observed by Weinberg [3]
and others [6, 8, 9]:

B
(2)
1 = A

(2)
11 ,

B
(2)
2 = 2A

(2)
21 ,

2A
(2)
22 = ∇1A

(2)
11 = ∇1B

(2)
1 . (3.2)

In this case the RGE show that the scale dependence of
the couplings in L2 is fully contained in the single pole
in ε, A

(2)
21 . Acting with Nl on A

(2)
1 yields the two terms

A
(2)
11 +2A

(2)
21 , where the first will be linear in the couplings

coming from L(1), and the latter will depend only on L(0).
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2 A
(2)
22

= A
(1)
11

Fig. 1. Graphical representation of the RGE for n = 2

The first of these equations is identical to (4.5) in [8],
whereas the second is equal to (4.6) or (2.44) also in [8].
As has already been observed [3, 6, 8] the second of these
equations allows one to calculate the double chiral logs
only with one-loop calculations. In passing we note that
∇(1)

1 can also be written as

∇(1)
1 = �a

(1)
11 · �∂(1) , (3.3)

as follows from (3.1). For later convenience we introduce
the symbol

dn := �a(n)
nn · �∂(n) . (3.4)

With this notation (3.3) can be re-expressed as ∇1 = d1.
We stress that all the dn commute:

[dn, dm] = 0 . (3.5)

At n = 3 we start the exploration of unknown territory
– the RGE read

B
(3)
1 = A

(3)
11 ,

B
(3)
3 = 2A

(3)
21 ,

B
(3)
3 = 3A

(3)
31 ,

3A
(3)
33 = ∇1A

(3)
22 ,

2A
(3)
22 + 3A

(3)
32 = (∇1 + ∇2)

[
A

(3)
11 + A

(3)
21

]
. (3.6)

If we act with ∇1 on the last equation, we can rewrite the
next-to-last as

3!A(3)
33 = ∇2

1A
(3)
11 = ∇2

1B
(3)
1 , (3.7)

which shows again that all the information about the three-
loop divergences is contained in the single pole in ε. The
equation is however not yet fully explicit: the operator ∇1

in fact contains derivatives �∂(n) with all n, but obviously
only the first few may contribute:

∇2
1B

(3)
1 =

[
∇(1)

1

]2
B

(3)
1 + ∇(1)

1 ∇(2)
1 B

(3)
1 , (3.8)

where in the last term the operator ∇(1)
1 acts only on �β

(2)
1

inside ∇(2)
1 . From (3.2) we see that ∇(1)

1 B
(2)
1 = 2A

(2)
22 , and

therefore, that the HPRGE for n = 3 can be rewritten as

3!A(3)
33 =

(
d2
1 + 2d2

)
B

(3)
1 . (3.9)

3.2 Highest-pole equation to all orders

After having analyzed explicitly the first few cases, it
should now be clear how to extend the derivation of the

3 A
(3)
33

= A
(1)
11 A

(1)
11

+ A
(2)
22

Fig. 2. Graphical representation of the RGE for n = 3

same equation to all orders. The only rule that we need
to use is rule (3) at the end of Sect. 2. The highest-pole
equation for a generic n reads

n!A(n)
nn = ∇n−1

1 A
(n)
11 = ∇n−1

1 B
(n)
1 . (3.10)

Such a simple expression is suggestive, but not very illumi-
nating, because, as we have seen above for the n = 3 case,
the product of the ∇1 is a complicated object, due to the
non-commuting property of the ∇1. In the n = 3 case, how-
ever, we have seen that one can rewrite the product of two
∇1s in terms of d1,2 – objects which have a clear meaning
and which commute between themselves. This fact indeed
generalizes to all orders, and allows us to rewrite the prod-
uct of n − 1 ∇1s (acting on B

(n)
1 ) in terms of the dk only

with k ≤ n−1, and to give a clear meaning to the HPRGE:

nA(n)
nn =


∑

γ

1∏l
k=1 βk!

(dα1)
β1 · . . . · (dαl

)βl


B

(n)
1 ,

(3.11)
where one sums over all γ := {αi, βi} having the property∑

i αiβi = n − 1. The derivation of this formula can be
found in Appendix B.

The effect of the operator di on any diagram is to sub-
stitute a vertex coming from the Lagrangian L(i) with
the corresponding highest-pole counterterm A

(i)
ii . The for-

mula (3.11) implies that the highest-pole counterterm is
obtained by calculating all one-loop diagrams contribut-
ing to B

(n)
1 and substituting all the vertices from the La-

grangians L(i), i < n, with the corresponding highest-
pole counterterm A

(i)
ii .

Notice that all A
(i)
ii can be expressed in terms of B

(j)
1 s

with j ≤ i only: the highest-pole counterterms can all
be calculated with one-loop diagrams. On the other hand,
(3.11) does not lend itself to an explicit direct evaluation to
all orders, but can only be used recursively. Also, each step
up in the recursive procedure is a non-trivial (although in
principle straightforward) one-loop calculation.

4 RGE for the subleading poles

In the case of the subleading poles, the situation becomes
somewhat more complicated. First of all we have to deal
with two different possible l-orders for the terms with k =
n − 1. The corresponding equations read

(n − 1)A(n)
n−1 n−1 = ∇1A

(n)
n−2 n−2 ,

nA
(n)
n n−1 = ∇1A

(n)
n−1 n−2 + ∇2A

(n)
n−2 n−2 .(4.1)
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2 A
(3)
22

= A
(1)
11 L(1) + A

(2)
11

3 A
(3)
32

= A
(1)
11

+ A
(1)
11

+ A
(2)
21

Fig. 3. Graphical representation of the RGE for the sublead-
ing poles (n = 3)

Just like for the highest-pole equation, we need to relate
the left-hand side of this equation with the right-hand
side of the equation with k one unit lower, until we reach
k = 1. One can do this easily for the first equation in (4.1)
– the result has exactly the same form as the one for the
highest-pole equation:

(n − 1)!A(n)
n−1 n−1 = ∇n−2

1 A
(n)
11 . (4.2)

In the second equation in (4.1) the right-hand side con-
tains two terms, and each of them comes with a different
coefficient in the next equation. The combinatorics is there-
fore somewhat more complicated, but can also be worked
out without major difficulties. The result reads

n!A(n)
n n−1 (4.3)

= 2∇n−2
1 A

(n)
21 +

n−3∑
j=0

(n − 1 − j)∇j
1∇2∇n−3−j

1 A
(n)
11 .

An analysis of the above formula to all orders is provided
in Appendix C: the result we obtain is similar to (3.11)
for the highest poles, but admittedly considerably more
involved. As in the case of the highest poles, also here the
formula can only be used in a recursive manner: to obtain
the subleading poles at �-order n one has first to work out
all leading and subleading poles of �-order n′ < n, and
insert these as vertices in one- and two-loop diagrams. For
this reason we provide the discussion of the formula to all
orders only in the appendix and consider here the RGE
for the subleading poles for the first few �-orders.

4.1 RGE for the subleading poles for n = 2 and 3

The first subleading poles appear at n = 2. We have al-
ready seen the RGE for this case in the previous section,
but we concentrated there on the leading pole. As for the
subleading poles, at this �-order the equations only relate
these to the corresponding β:

B
(2)
1 = A

(2)
11 ,

A
(2)
11

= L(1)

A
(2)
21

= +

Fig. 4. Vertices needed for the calculation of the subleading
poles (n = 3)

B
(2)
2 = 2A

(2)
21 . (4.4)

At n = 3 the RGE for the subleading poles start to provide
some interesting information. All the RGE at n = 3 are
given in (3.6) – here we consider only those relevant for the
subleading poles, and split them according to the l-order,
as in (4.1):

2A
(3)
22 = ∇1A

(3)
11 =

(
∇(1)

1 + ∇(2)
1

)
B

(3)
1 , (4.5)

3A
(3)
32 = ∇1A

(3)
21 + ∇2A

(3)
11 =

1
2
∇(1)

1 B
(3)
2 + ∇(2)

2 B
(3)
1 .

The meaning of these equations is as follows: the first one
implies that the part of the subleading poles that comes
from two-loop diagrams is given by the single pole from
one-loop diagrams (A(3)

11 ) after one has substituted one L(1)

(L(2)) vertex with A
(1)
11 (A(2)

11 ). According to the second
one the double pole coming from three-loop diagrams is
given by two terms: the first one is obtained from single
poles from two-loop diagrams after substitution of one L(1)

vertex with A
(1)
11 , and the second one from single poles from

one-loop diagrams after substitution of one L(2) vertex
with 2A

(2)
21 , i.e. the subleading poles of one �-order lower.

5 Role of one-particle-reducible diagrams

In the graphical representations of the RGE we have always
drawn one-particle-irreducible (1PI) graphs, although also
one-particle-reducible (1PR) ones contribute to the gen-
erating functional Z, and possibly to its divergences. It
would indeed be desirable to be in a setting where only
1PI graphs contribute to divergences and therefore have
to be considered in the RGE. In this section we show how
one can ensure that this setting is realized. The problem
is related to the role of counterterms that vanish at the
classical solution of the equations of motion (EoM terms in
short). At each �-order n all the divergences are absorbed
by the counterterms O

(n)
i , and we may assume that they

form a minimal basis, i.e. that they are all linearly in-
dependent. In the reduction procedure of a complete list
of counterterms to a minimal basis one eliminates terms
which are algebraically linearly dependent (such as terms
related by trace identities in CHPT), terms which are a
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total derivative, and also the EoM terms. While the first
two categories of terms can be eliminated without any con-
sequences on the renormalization procedure, eliminating
EoM terms is a less trivial issue, which has to be discussed
in some detail. This problem has already been dealt with
in [8,9,12], in performing the renormalization at the two-
loop level. As observed (and explicitly verified) in [8], one
can choose the coefficient in front of the EoM terms in
such a way that the sum of 1PR graphs is finite. Here we
discuss how this can be done to any loop order.

The sum of all 1PI graphs defines the generating func-
tional of proper vertices (or effective action) Γ – we denote
the sum of 1PR graphs with Z1PR. In the background field
method one shifts the fields over which the path integral
is performed, φ → φ + ξ, and then one integrates over the
ξ fields. In this framework Γ , the sum of all 1PI diagrams,
becomes a functional both of the fields φ (which need not
be fixed at the solution of the EoM) and of the external
sources J . Order by order in the loop expansion we have

Zn[J ] = Γn[φ, J ]|φ=φcl
+ Z1PR

n [J ] , (5.1)

where the contribution of 1PI diagrams to Zn is obtained
by evaluating Γn at the classical solution φcl = φcl[J ]. In
the following we will denote with a bar a functional which
is evaluated at the classical solution: Γ̄ := Γ|φ=φcl

. We
stress that the splitting of Zn[J ] between 1PI and 1PR
diagrams is ambiguous: either by a field redefinition, or
by adding terms that vanish at the EoM (the two things
are equivalent; see, e.g. [7]) one can change Γ [φ, J ]. On
the other hand, if all counterterm Lagrangians L(k) for all
k ≤ n have been specified, including terms that vanish at
the EoM, then Γ [φ, J ] is unambiguously defined.

The most important property of the effective action Γ
in this context is that Z1PR

n can be written as tree diagrams
with the Γk (with k < n) as vertices [1,2]. At the two- and
three-loop level, e.g., we have

Z1PR
2 = −1

2
Γ̄ i

1GilΓ̄
l
1 ,

(5.2)
Z1PR

3 =
1
2
Γ̄ i

1GijΓ̄
jk
1 GklΓ̄

l
1 − Γ̄ i

2GijΓ̄
j
1 ,

where we have denoted functional derivatives with respect
to φ with

Γ i1...ik
n :=

δkΓn

δφi1 . . . δφik

. (5.3)

In general all vertices of the form Γ j1...jm

k with k < n ;
jm ≤ n − k contribute to Z1PR

n .
The condition that ensures that both Γ̄n and Z1PR

n are
separately finite can be established by induction. Suppose
that for all k < n Γ̄k and Z1PR

k are separately finite. Since
tree diagrams do not generate new divergences, Z1PR

n can
be divergent only if some of the vertices are: in order to have
Z̄1PR

n finite we must impose that all the vertices Γ̄ j1...jm

k
with k < n and m ≤ n − k are finite. But all Γk for k < n
are finite at the EoM by assumption: possible divergences
in their functional derivatives can be described by local
terms that vanish at the EoM. These can be removed by

tuning the coefficients of the counterterms of �-order k that
vanish at the EoM. The proof by induction is completed by
observing that for n = 0 and 1 the generating functional
does not admit divergent 1PR contributions: Γ̄0 and Γ̄1 are
both finite (after renormalization). A detailed discussion
of the case n = 2 can be found in [8].

In summary, in order to have 1PR and 1PI contribu-
tions to the generating functional Z separately finite, one
must renormalize not only the Z[J ] but also the effective
action Γ [φ, J ] as a functional of φ. This can be done by
exploiting the freedom to add counterterms that vanish at
the EoM.

What we are interested in here, however, is not whether
Z1PR

n is completely finite, but whether it plays a role in
the RGE, and in particular in the HPRGE. According to
the RGE the highest poles are fully determined by the 1/ε
divergences of l-order one: in order not to have to consider
1PR graphs in the HPRGE, we must impose that Z1PR

n

does not contain 1/ε divergences of l-order one. In view
of the general statements made above about Z1PR

n this
condition has to be transferred to the vertices Γk for all
k ≤ n − 1. The part of Γk which is of l-order one can be
projected out with the operator

P k
l=1 :=

∑
αiβi=k−1

∏
i

1
βi!

[
D(αi)

]βi

, (5.4)

where [D(i)]1 = D(i) and
[
D(i)

]n+1
:=

(
D(i) − n

) [
D(i)

]n
;

cf. (2.14). The condition we have to impose at order n
therefore reads [

P k
l=1Γk

]j1...jm = finite (5.5)

for all k < n and m ≤ n−k. At first sight, this may look like
a severe complication of the implementation of the RGE.
As we discuss in Appendix D, however, this is not the case:
typically, for a given Γk only a finite number of functional
derivatives may at all be divergent, such that whenever a
new Γk is calculated and renormalized, one can impose that
all its functional derivatives be finite (by an appropriate
choice of the counterterm basis). If one renormalizes the
theory in this manner the 1PR diagrams play no role in the
renormalization procedure, and therefore in the RGE. An
illustration of the concepts discussed here is provided in
the following section for the case of renormalizable theories
and in Appendix D in the general case.

6 RGE for renormalizable theories

The RGE we discussed so far were derived in a framework
which is particularly convenient with non-renormalizable
theories like CHPT. This setting, on the other hand, is
completely general, and can be used also with renormaliz-
able theories, as we want to show in this section. For the
sake of simplicity we will discuss the case of a O(N) φ4

theory.
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The O(N) φ4 theory is defined by the following classical
Lagrangian:

L(0) =
1
2

(
∂µ

�φ · ∂µ�φ − M2�φ · �φ
)

− λ

4

(
�φ · �φ

)2
− �φ · �f ,

(6.1)
where �φ and �f are N -component vectors, the latter of ex-
ternal fields. This theory is renormalizable: the divergences
arising in loop calculations can be reabsorbed by a redef-
inition of the wave function renormalization Zφ and the
bare parameters M2 and λ. Here, however, we want to
discuss renormalization in a manner which is completely
analogous to the case of a non-renormalizable theory. We
will introduce a new Lagrangian at each order in �:

Lbare = L(0) + �L(1) + �
2L(2) + . . . , (6.2)

with

L(n) = c
(n)
1

1
2
∂µ

�φ · ∂µ�φ − c
(n)
2

1
2
M2�φ · �φ − c

(n)
3

λ

4

(
�φ · �φ

)2
.

(6.3)
Notice that by using the equations of motion one can elim-
inate one of the four possible terms (6.1) such that a min-
imal basis of counterterms counts only three independent
operators.

In order to renormalize the theory it is sufficient to
define the bare couplings c

(n)
i as

c
(n)
i =

(
µ−ελ

)n

[
c
(n) r
i +

n∑
k=1

a
(n)
k i ε−k

]
, (6.4)

where, for convenience we have factored out µ−εnλn in
such a way that the renormalized couplings c

(n) r
i and the

coefficients a
(n)
k i are dimensionless even in d 	= 4. With this

choice the scaling with µ of the bare Lagrangians L(n) is
exactly as given in (2.5): the RGE that follow from there
must therefore be valid also in this case. The coefficients
a
(n)
k i are analogous to those defined in (2.8), and can further

be expanded in the l-order: a
(n)
k i =

∑n
l=k a

(n)
lk i. Each new

coupling constant c
(n) r
i has its own beta function, defined

as
µ

d
dµ

c
(n) r
i (µ) = β

(n)
i + εnc

(n)
i , (6.5)

and which the RGE relate to:

β
(n)
i =

n∑
l=1

la
(n)
l1 i . (6.6)

A full two-loop calculation of the generating functional
in this theory is relatively easy – the results can be found,
e.g., in [13] and read

a
(1)
1 1 = 0, a

(1)
1 2 =

2
P

(N + 2), a
(1)
1 3 =

2
P

(N + 8) , (6.7)

for the one-loop divergences and

a
(2)
1 1 = − 1

P 2 (N + 2)

a
(2)
2 1 = 0 ,

a
(2)
1 2 = − 2

P 2 (N + 2)
[
3 − P (c(1) r

2 + c
(1) r
3 )

]
,

a
(2)
2 2 =

4
P 2 (N + 2)(N + 5) ,

a
(2)
1 3 = − 4

P 2

[
22 + 5N − P (N + 8)c(1) r

3

]
,

a
(2)
2 3 =

4
P 2 (N + 8)2 , (6.8)

at two loops, with P = 16π2. The results of the two-loop
divergences allow us to test the RGE for n = 2 which are
written explicitly in (3.2):

2a
(2)
2 1 = ∇a

(2)
1 1 =

3∑
i=1

a
(1)
1 i

∂

∂c
(1) r
i

a
(2)
1 1 = 0 ,

2a
(2)
2 2 = ∇a

(2)
1 2 =

3∑
i=1

a
(1)
1 i

∂

∂c
(1) r
i

a
(2)
1 2

=
4

P 2 (N + 2)(2N + 10) , (6.9)

2a
(2)
2 3 = ∇a

(2)
1 3 =

3∑
i=1

a
(1)
1 i

∂

∂c
(1) r
i

a
(2)
1 3 =

8
P 2 (N + 8)2 ,

which perfectly agree with the results of the direct calcu-
lation (6.8). We can now extend and solve the RGE for
the highest poles to all orders. What makes such a solution
possible in a renormalizable theory is the fact that the new
vertices coming from the L(n) Lagrangian (and that have
to be inserted in the relevant one-loop diagrams) are iden-
tical to those appearing in the classical Lagrangian (6.1).

A divergent one-loop contribution to the renormaliza-
tion of c

(n)
3 can have at most two vertices, i.e. must be

proportional to c
(n−k) r
3 c

(k−1) r
3 , with k = 1, . . . , n. The co-

efficient of all these terms is identical, and can be read off
from (6.7):

a
(n)
11 3 =

2
P

(N + 8)
n∑

k=1

c
(n−k) r
3 c

(k−1) r
3 . (6.10)

The equation to all orders (3.11) can now be easily solved
by induction. We have seen that

a
(1)
1 3 = p, a

(2)
2 3 = p2, p :=

2(N + 8)
P

, (6.11)

and it is easy to prove that if a
(n−1)
n−1 3 = pn−1, then (6.10)

and (3.11) imply that a
(n)
n 3 = pn.

The solution of the RGE for the mass term is only
slightly more complicated but can also be solved to all or-
ders. The divergent part of all one-loop graphs at �-order
n can also in this case depend on at most two countert-
erms, c

(k) r
3 c

(n−1−k) r
2 , for all 0 ≤ k ≤ n − 1. By exploiting

again the fact that the structure of the counterterms is
identical to that of the classical Lagrangian we can read
off from (6.7) the coefficient of all the divergent terms:

a
(n)
11 2 =

q

n

n−1∑
k=0

c
(k) r
3 c

(n−1−k) r
2 , q :=

2
P

(N +2) . (6.12)
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At one and two loops we had

a
(1)
1 2 = q, a

(2)
2 2 =

1
2
q(q + p) , (6.13)

and by using (6.12) and (3.11) we can easily prove by
induction that, if

a
(n−1)
n−1 2 =

1
(n − 1)!

n−2∏
k=0

(q + kp) , (6.14)

then

a
(n)
n 2 =

1
n!

n−1∏
k=0

(q + kp) . (6.15)

6.1 EoM counterterms

The example of the O(N) φ4 Lagrangian is useful also to
illustrate what is the role of EoM counterterms. For the
L(n) Lagrangians we chose above the set of operators

O1 =
1
2
∂µ

�φ · ∂µ�φ , O2 = −1
2
M2�φ · �φ ,

O3 = −λ

4

(
�φ · �φ

)2
, (6.16)

but we could in principle choose a different set at each
order n, and replace one of the operators in (6.16) with

O4 = −�f · �φ . (6.17)

The general discussion given in Sect. 5 shows that if
one wants to deal only with 1PI diagrams in the RGE,
one should select the counterterm Lagrangian requiring
that even functional derivatives with respect to φ of the
effective action Γn be finite. In the present case, at one
loop we have

Γ1 = S1 +
1
2
Tr log Sij

0 ,

Γ k
1 = Sk

1 +
1
2
Sijk

0 Gij . (6.18)

The evaluation of the loop part of Γ k
1 gives

1
2
Sijk

0 Gjk = −1
ε

2
P

{
φi

[
M2(N + 2) + λ�φ · �φ(N + 8)

]}
+finite terms , (6.19)

while the functional derivative of the contribution to the
action of the four operators entering at each order reads

δO1

δφi
= −∂2φi ,

δO2

δφi
= −M2φi ,

(6.20)
δO3

δφi
= −λφi

(
�φ · �φ

)
,

δO4

δφi
= −fi ,

which shows that the divergent part in Sijk
0 Gjk/2 can be

cancelled by S̄i
1 only if both O2 and O3 are included in

the list of operators: at one loop either O1 or O4 can be
eliminated. In fact, since the structure of the Lagrangian
is always the same, this criterion extends also to higher or-
ders.

In this example it is also easy to verify (and we leave
this to the reader) that in case one choses a different basis
for the counterterm Lagrangian, e.g. O1, O2 and O4, then
1PR diagrams do contribute to local divergences, and that
if one takes them also into account then the RGE still hold
as before. Fixing the basis in such a way that only 1PI
graphs contribute to the divergences is only a matter of
convenience and does not change the form of the RGE.

6.2 Comparison to the standard treatment of λφ4

The way we discussed renormalization for this example of
a renormalizable theory is not standard, as it is designed
to parallel the renormalization procedure in CHPT (or
any other non-renormalizable theory). In this section we
will clarify the connection between our treatment and the
standard one.

The multiplicity of coupling constants we introduced,
the c

(n)
i , are not separately observable. Indeed, the phys-

ical mass and coupling constant that will appear in any
observable will have the form

M2
ph = M2

(
1 +

∞∑
n=1

a
(n)
n 2 �n + . . . +

∞∑
n=1

λnc
(n) r
2 (µ)

)


 M2 (1 − p�)−q/p
,

(6.21)

λph = λ

(
1 +

∞∑
n=1

a
(n)
n 3 �n + . . . +

∞∑
n=1

λnc
(n) r
3 (µ)

)


 λ

1 − p�
,

where � = λ log µ, and where the ellipses denote terms with
subdominant powers of logs, and where the last expression
is accurate only up to the leading logs. Notice that the
expression between brackets after the first equality sign
in (6.21) is µ-independent: λ and M are µ-independent
by definition, and the coefficients of each power of λ are
separately µ-independent as implied by the β-functions of
the c

(n) r
i couplings.

Since λ and c
(i) r
3 (µ) always appear in this combination,

and are not separately observable, it is useful to lump them
together into one single quantity, the part in λph which
does not contain logs:

λR(µ) := λ

(
1 +

∞∑
i=1

λic
(i) r
3 (µ)

)
, (6.22)

and which is nothing but the standardly defined renormal-
ized coupling constant. Any quantity can now be expressed
in terms of λR(µ) (and the similarly defined renormalized
mass), rather than λ, by inverting (6.22).
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It is interesting to derive how λR(µ) depends on µ
from (6.22):

βλ := µ
d
dµ

λR(µ) = ∇λR(µ) = λ

∞∑
i=1

λiβ
(i)
3 , (6.23)

and if we re-express λ on the RHS in terms of λR(µ) we
finally get

βλ = λR(µ)
∞∑

i=1

λi
R(µ)β̄(i)

3 , (6.24)

where
β̄

(i)
3 =

[
β

(i)
3

]∣∣∣
c
(n)
i =0

(6.25)

is the part of the beta functions which does not depend on
any of the constants. (Which can also be identified with
the help of the loop number: β

(i)
3 =

∑
l β

(i)
l 3 ; β̄

(i)
3 = β

(i)
i 3 .)

7 RGE for theories with renormalizable
and non-renormalizable interactions

In the previous section we have shown how the RGE de-
rived here apply to the case of a renormalizable field theory.
Our whole framework, on the other hand, has been devel-
oped in order to treat the case of a non-renormalizable field
theory like CHPT, where the only renormalizable part of
the Lagrangian corresponds to a free field theory (in the
chiral limit). Between these two extreme cases there is
an intermediate one, which is actually used quite often in
phenomenology: the case of an interacting renormalizable
theory to which one adds non-renormalizable interactions.
The latter are usually suppressed by powers of a certain en-
ergy scale. For example the search for new physics beyond
the standard model is often performed in such a framework
– translating experimental measurements into bounds on
the strength of the non-renormalizable interactions. In the
present section we will discuss the application of our RGE
to such cases. The role of EoM terms in such a framework
has been discussed in [16]. As in the previous section we
choose to work with a simple example and illustrate in the
clearest possible setting the use of the RGE. We take as
renormalizable part of the Lagrangian the O(N) φ4 theory
discussed above and add a φ6 term to it:

L(0) =
1
2

(
∂µ

�φ · ∂µ�φ − M2�φ · �φ
)

− λ

4

(
�φ · �φ

)2

− g

6Λ2

(
�φ · �φ

)3
− �φ · �f , (7.1)

where g is a dimensionless coupling constant and Λ an en-
ergy scale. Such a Lagrangian is non-renormalizable, i.e.
more and more counterterms will be required in order to
make loop calculations finite. We choose, however, to ne-
glect all the effects which are suppressed by more powers of
Λ than the φ6 interaction. With this choice, even at higher
orders we will consider only the four operators introduced
in (7.1):

L(n) = c
(n)
1

1
2
∂µ

�φ · ∂µ�φ − c
(n)
2

1
2
M2�φ · �φ

−c
(n)
3

λ

4

(
�φ · �φ

)2
− c

(n)
4

g

6Λ2

(
�φ · �φ

)3
. (7.2)

If we define the bare couplings as in (6.4) and renormalize
the theory at the one-loop level we find the following non-
zero coefficients:

a
(1)
1 2 =

2
P

(N + 2),

a
(1)
1 3 =

2
P

[(N + 8) + 2η(N + 4)] , (7.3)

a
(1)
1 4 =

6
P

(N + 14) ,

where

η :=
gM2

λ2Λ2 . (7.4)

The RGE allow us to move to higher loops: at the two-loop
level, e.g. we find

a
(2)
2 2 =

1
P

(N + 2)
[
a
(1)
1 2 + a

(1)
1 3

]
,

ã
(2)
2 3 =

2
P

[
(N + 8)a(1)

1 3 + η(N + 4)
(
a
(1)
1 2 + a

(1)
1 4

)]
, (7.5)

a
(2)
2 4 =

3
P

(N + 14)
(
a
(1)
1 3 + a

(1)
1 4

)
,

where, for convenience, we have introduced the symbol

ã
(n)
n 3 = a

(n)
n 3 + ηâ

(n)
n 3 , (7.6)

which explicitly shows that for η = 0 we obtain exactly the
same coefficients a

(n)
n 3 as in the renormalizable case. If we

apply the RGE to higher orders following the same reason-
ing used in the previous section we get the general results

â
(n)
n 3 =

1
n

4
P

(N + 4)
n∑

k=1

a
(n−k)
n−k 2a

(k−1)
k−1 4,

(7.7)

a
(n)
n 4 =

1
n

6
P

(N + 14)
n∑

k=1

a
(n−k)
n−k 3a

(k−1)
k−1 4 ,

where we have considered only the new parts with respect
to the purely renormalizable case. These recursion rela-
tions can be solved also in this case and give

â
(n)
n 3 =

r

n!

n−1∏
k=0

(t + kp) , a
(n)
n 4 =

1
n!

n−1∏
k=0

(s + kp) , (7.8)

where p has been introduced in the previous section and

r :=
4(N + 4)

P
, s :=

6(N + 14)
P

,

t := q + s =
8(N + 11)

P
. (7.9)

In our formulation of the renormalization procedure an
infinite number of finite counterterms appear, which are
not individually observable, as already discussed for the
φ4 theory. Only the sum over the series of counterterms
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and the accompanying logs are observable quantities. For
the coupling constant of the new φ6 interaction we find

gph = g

(
1 +

∞∑
n=1

a
(n)
n 4 �n + . . . +

∞∑
n=1

λnc
(n) r
4 (µ)

)

+O

(
g2M2

Λ2

)


 g(1 − �p)−s/p + O

(
g2M2

Λ2

)
, (7.10)

which shows that even to first order in g the observable
coupling constant gets renormalized in a non-trivial way
by the renormalizable part of the interaction, and that
the corresponding series of leading logs can be resummed.
The results obtained here are in agreement with what one
would obtain by considering the standard treatment of the
scaling behavior of operators – the solution of our general
RGE in this particular case has shown that the series of
the leading logs is determined by one single parameter, s,
which is nothing but the anomalous dimension (modulo
normalization factors) of the φ6 operator.

As far as the renormalizable φ4 interaction is con-
cerned, we have seen that the φ6 term renormalizes it at
every order in the loop expansion. The renormalization is
proportional to gM2/Λ2 and requires the introduction of
a specific counterterm: the one for the φ4 term now must
have the form

c̃
(n)
3 = c

(n)
3 +

gM2

Λ2 ĉ
(n)
3 , (7.11)

where both c
(n)
3 and ĉ

(n)
3 have to be split into infinite and

finite, scale-dependent parts. The finite, observable cou-
pling constant now becomes

λph = λ

(
1 +

∞∑
n=1

a
(n)
n 3 �n + . . . +

∞∑
n=1

λnc
(n) r
3 (µ)

)
(7.12)

+r
gM2

Λ2

(
1 +

∞∑
n=1

â
(n)
n 3 �n + . . . + +

∞∑
n=1

λnĉ
(n) r
3 (µ)

)
.

At first sight one may get the impression that, if we were
now to resum the series of the leading logs in λph, and
define the corresponding λR(µ), this would scale differ-
ently from the renormalizable case. However we first no-
tice that the correction proportional to gM2/Λ2 in (7.12)
is scale independent. Indeed one can easily check that the
series of the leading logs in the second term on the right-
hand side of (7.12) can be fully reabsorbed by substituting
gM2/Λ2 → gphM2

ph/Λ2. The leading log approximation
for λph therefore reads

λph 
 λ

1 − p�
+ r

gphM2
ph

Λ2 + O(g2) 
 λ̃

1 − p�
, (7.13)

with λ̃ = λ + rgphM2
ph/Λ2. The conclusion is that even in

the presence of a φ6 interaction the scaling behavior of the
φ4 coupling constant does not change, provided one uses
the same renormalization condition for λ.

8 Conclusions

In this paper we have studied the RGE for a generic non-
renormalizable QFT. In the formulation of the problem
we have adopted a notation suited to the case of CHPT,
but have not used any of its specific properties in the
derivation of the equations: the RGE that we derived are
completely general.

We have worked out explicitly the structure of the lead-
ing divergences to all orders and found that they can be
recursively expressed in terms of divergences of one-loop
diagrams only. This result is an extension to all orders of
the result obtained by Weinberg at the two-loop level [3].
Like in that case, however, where in order to obtain the
leading two-loop divergence one had to perform a new
and non-trivial one-loop calculation [6, 8], the extension
to higher loops also requires at each step a new one-loop
calculation. In the case of CHPT, e.g., such one-loop calcu-
lations are, although straightforward in principle, long and
tedious in practice. As we do not know a way to perform
all these calculations in one go, and solve explicitly the
recursive procedure, we are not able to provide a method
to make resummations of series of leading chiral logs.

A technical problem which occurs in the practical use
of the RGE concerns the role of 1PR diagrams. This in
turn is related to the freedom one has in choosing a ba-
sis for the counterterms at each order in the perturbative
expansion, and to the fact that different bases may be re-
lated by counterterms that vanish at the solution of the
equations of motion. As we have shown one can use this
freedom to choose the basis at each order in such a way
that in the RGE only 1PI one-loop diagrams have to be
considered. Alternatively, if one wants to use an arbitrary
basis then the RGE provide the right answer for the lead-
ing divergences only if one takes into account also the local
divergences generated by 1PR one-loop graphs.

We have analyzed also the RGE for the subleading di-
vergences, but there even a fully explicit recursive relation
is too complicated to write down. We have discussed ex-
plicitly the equations at the two- and three-loop level. A
discussion of how one can derive the all-order formula can
be found in Appendix B.

If one formulates the renormalization procedure for a
renormalizable QFT by introducing at each loop order (or
order in �) a new bare Lagrangian which is independently
scale invariant, the RGE which we have derived here ap-
ply equally well to this case. We have shown in the explicit
example of a φ4 theory that one can solve explicitly the
recursion relations for the leading divergences and obtain
results which are in full agreement with those obtained in
the usual formulation of renormalizable QFT. We could
calculate explicitly the series of the leading divergences
even after adding a φ6 interaction to the φ4 theory: in this
case the results provided a calculation of the anomalous
dimension of the φ6 operator. These explicit examples il-
lustrate neatly why the complicated structure of the RGE
that we have derived becomes manageable for the case of
a renormalizable theory: the structure of the counterterm
Lagrangian is the same to all orders in �, and this makes
the solution of the recursion relations possible.
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This is unfortunately not the case for non-renormal-
izable theories of the CHPT kind, where a resummation
of the leading divergences does not seem to be feasible.
In the past, applications of the RGE in CHPT have con-
cerned the calculations of double chiral logs for various
quantities. We plan to extend these calculations to other
quantities of interest, namely weak non-leptonic decays,
where these double chiral logs will provide interesting in-
formation about the next-to-next-to-leading corrections.
It will also be very interesting to explore the practical
feasibility of calculations of triple chiral logs for some sim-
ple quantities, e.g. Mπ, and see how far one can push the
calculation of the series of the leading logs [17].
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A Dimensional analysis

In deriving the RGE we have used as starting point the
scaling with µ of the Lagrangians of �-order n given in (2.5),
and have justified this choice with the claim that in CHPT
this is the correct one. We explain this here. The leading
order CHPT Lagrangian (for simplicity we work here in
the chiral limit) reads [4]

L(0) =
F 2

4
〈∂µU†∂µU〉 , (A.1)

with U = exp iφ/F a dimensionless function of φ, which
implies [φ] = [F ]. The dimension of L(0) (which is µ-
independent by definition) is d, which implies d = 2[∂µ] +
2[F ]. This leads to [φ] = [F ] = d−2

2 .
At higher orders the Lagrangians L(n) will contain

2(n + 1) powers of derivatives which at d = 4 must be
compensated by 2(n + 1) − 4 = 2(n − 1) inverse powers
of a physical energy scale. The only available one in this
framework is F . The correct dimensions of L(n) for d 	= 4
can be restored by the appropriate powers of the arbitrary
scale µ. The Lagrangian L(n) must therefore scale with a
factor µ−εn.

B Proof of the highest-pole equation
to all orders

B.1 Notation

In the RGE products of the ∇l appear everywhere, and in
order to fully exploit the information contained in the RGE
it is necessary to express them explicitly. In this appendix

we show how to do this. We first introduce some convenient
notation, and denote a product of k ∇lis simply by the
(ordered) list of lis within square brackets:

∇l1∇l2 . . .∇lk =: [l1l2 . . . lk] . (B.1)

We remind the reader that the subscripts li stand for the
l-order of the β-functions appearing inside the ∇. Such
a product contains many terms because each ∇li can act
on all other ∇lj on its right-hand side. In order to handle
these many terms conveniently it is necessary to find a
sufficiently compact notation. We illustrate this by con-
sidering first the simple case of a product of two ∇s. This
has two terms, one where the derivative in the first ∇ acts
on the β in the second ∇, and one where both derivatives
are free to act on whatever is on their right-hand side:

∇l∇k =

(∑
n

�β
(n)
l · �∂(n)

)(∑
m

�β
(m)
k · �∂(m)

)
(B.2)

=
∑
n,m

[
β

(n)
li

∂β
(m)
kj

∂c
(n)
i

∂

∂c
(m)
j

+ β
(n)
li β

(m)
kj

∂

∂c
(n)
i

∂

∂c
(m)
j

]
,

where we have used the summation convention for repeated
indices. We denote these two terms by

[lk] = (l, k) + (l)(k) . (B.3)

To each bracket corresponds one free derivative, and the
brackets commute by definition. Consider now a product of
three ∇s, and construct it by multiplying from the left the
product of two ∇s with another ∇. The latter can either
act on the other two ∇s or remain free. In the notation
just introduced this can be rephrased as follows: if we add
a new index from the left in the left-hand side of (B.3)
this can enter from the left on each of the brackets on the
right-hand side of (B.3), or stay alone in its own bracket:

[jlk] = ([jl], k) + (k)(j, l) + (l)(j, k)
+(j)(l, k) + (j)(l)(k) . (B.4)

Using (B.3) the first term could still be rewritten as

([jl], k) = ((j, l), k) + ((j)(l), k) . (B.5)

In general a bracket can have at most two arguments: the
first one (if present) is a ∇, or a product thereof, whose free
derivatives are all acting on the ∇ identified by the second
argument. The derivative corresponding to the latter ∇
remains free.

Consider now a generic product of k ∇s. It is easy to
convince oneself that one can write this as

[l1 . . . lk] =
∑
all

splittings

∏
all

subsets

([li1 . . . lij−1 ], lj) , (B.6)

and that a recursive use of the latter will generate all the
terms in the product. Note that the sum has to run over
all possible splittings of the set of k numbers into subsets,
and that the order of the li inside the subsets has to be
the same as in the original set.
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Until now all the indices appearing in this notation re-
ferred to the l-order, but it is useful also to introduce an
index related to the v-order. A given ∇l contains deriva-
tives with respect to coupling constants of any v-order
larger than l:

∇l =
∞∑

n=l

�β
(n)
l · �∂(n) . (B.7)

A ∇ (or a product thereof), however, always acts on ob-
jects (the A

(n)k
l ) which are polynomials in the coupling

constants c
(n)
i , and which have a maximum v-order, such

that only a finite number of terms in the infinite sum (B.7)
will play a role. The v-order of a monomial in the c

(n)
i is

defined as

Nv

[∏
i

(
c
(ni)
ji

)ki

]
=

∑
i

niki . (B.8)

Analogously, a product of derivatives will reduce the v-
order of the object it acts on by the amount

∆v

[∏
i

(
∂

(ni)
ji

)ki

]
=

∑
i

niki . (B.9)

A product of derivatives acting on a monomial gives zero
if the v-order of the latter is lower than the ∆v of the
derivatives. For a polynomial in the c

(n)
i it is important to

identify its maximum v-order: for a A
(n)
lk this is equal to

n − l (which is also its minimum v-order). The first RGE
relates B

(n)
l to A

(n)
l1 : the v-order of B

(n)
l is therefore also

equal to n − l.
Equation (B.7) shows that the minimal ∆v of ∇l is l.

If we consider products of ∇s, their minimal ∆v is

min (∆v[l1 . . . lk]) =
∑

i

li . (B.10)

It is convenient to write the brackets as sums of terms with
a definite v-order:

([l1 . . . lk], j) =
∞∑

n=l1+...+lk+j

([l1 . . . lk], j)n , (B.11)

where we have made explicit the fact that the minimal ∆v

of a bracket is equal to the sum of all the indices inside
the bracket (B.10). Moreover, according to (B.9), the ∆v

of a product of brackets is equal to the sum of their ∆vs:

∆v

[
([. . .], l1)n1([. . .], l2)n2 . . . ([. . .], lj)nj

]
=

j∑
i=1

ni .

(B.12)

B.2 Highest pole equation

The equation for the highest pole reads

n!A(n)n
n = ∇n−1

1 β
(n)
1 . (B.13)

Note that this is actually a set of equations for each of the
components of A

(n)n
n and β

(n)
1 :

A(n)
nn = �a(n)

nn · �O(n) , B
(n)
1 = �β

(n)
1 · �O(n) , (B.14)

and that the operators O
(n)
i just play the role of a basis

of vectors and only allow us to write the equation more
compactly. In fact the content of the equations remains
exactly the same if we substitute O

(n)
i → ∂

(n)
i . If we do

that, (B.13) gets rewritten as

n!dn =
([

11 . . . 1︸ ︷︷ ︸
n−1

]
; 1

)
n

=
([

1n−1], 1)
n

, (B.15)

where we have directly used the notation with the brackets,
and where we have introduced the symbol [1n−1] for the
product of n − 1 ∇1.

In order to express fully explicitly the highest poles
A

(n)
nn , or equivalently the dn, we now have to use (B.6) and

split the n − 1 ∇1 in all possible subsets:[
1n−1]

n−1 =
∑

{nimi=n−1}
(n − 1)!

∏
i

ci

[([
1ni−1], 1)

ni

]mi

,

(B.16)
where ci is a combinatorial factor that we will discuss
below. Note that we have used explicitly the fact that the
total ∆v has to be equal to n: this implies that all brackets
can contribute only with their minimal ∆v – according
to (B.15) their contribution is equal to ni!dni

.
Finally we have to discuss the factors ci, which count

how many times a term is generated in the expansion of
the product of n−1 ∇1s. We do this in the following steps.
(1) We first permute the n factors ∇1 in all possible ways,
and get a factor (n − 1)! (already written explicitly in
(B.16)). We can now just count the different splittings of
n − 1 into smaller integers, and not consider the ordering.
This however generates an overcounting, which is compen-
sated for in the next two steps.
(2) The ordering of the ∇1 in each subset has to be like
the original ordering. To compensate for this overcounting
we must include a factor 1/(ni!)mi in ci.
(3) The mi copies of the same subset are not distinguish-
able: ci must also contain a factor 1/mi!. In total we get

ci =
1

(ni!)mimi!
, (B.17)

and finally
n!dn = (Sn−1, 1)n , (B.18)

where

Sn := [1n]n = n!
∑

{nimi=n}

∏
i

1
mi!

dmi
ni

, (B.19)

which is the result we were after.

C Beyond the highest-pole equation

We will now consider the divergences A
(n)
lk with k < n.

The starting point is the RGE (2.21) which we rewrite
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here for convenience:

lA
(n)
lk =

l−k+1∑
l′=1

∇l′A
(n)
l−l′ k−1 l = k, . . . n, k = 2, . . . , n .

The equation relates A
(n)
lk to A

(n)
l′ k−1, but if we apply it

recursively we end up relating it to A
(n)
l′ 1 = 1/l′B(n)

l′ , in the
following manner:

A
(n)
lk =

∑
l

cl∇l1 ·. . .·∇lk−1B
(n)
lk

; cl =


 k∏

j=1

k∑
m=j

lm


−1

,

(C.1)
where the sum runs over all possible ordered k-ple l =
(l1, . . . , lk) with the property

∑k
i=1 li = l. Using the no-

tation introduced in the previous section we can rewrite
this as

d
(n)
lk =

∑
l

cl([l1 . . . lk−1], lk)n , (C.2)

where

A
(n)
lk = �a

(n)
lk · �O(n) ⇒ d

(n)
lk = �a

(n)
lk · �∂(n) . (C.3)

If we want to make this equation more explicit we have
to expand the bracket [l1 . . . lk−1] according to (B.6) and
relate the various brackets to ds with lower �-order. The
scheme is recursive and allows one to go to as high an �-
order as one wants, but having a fully explicit formula to
all orders like the one we had for the highest pole looks
very difficult. In order to illustrate what kind of difficulties
one faces beyond the leading poles we will now discuss the
case of the subleading poles.

In the case of the subleading poles (k = n−1) we have
to deal with two different l-order. Equation (C.2) can be
written down as follows for this case:

(n − 1)!d(n)
n−1 n−1 =

([
1n−2], 1)

n

n!d(n)
n n−1 =

([
1n−2], 2)

n
(C.4)

+
n−3∑
j=0

(n − 1 − j)
([

1j21n−3−j
]
, 1

)
n

,

where [
1j21k

]
:=

[
1 . . . 1︸ ︷︷ ︸

j

2 1 . . . 1︸ ︷︷ ︸
k

]
. (C.5)

We first consider the first equation in (C.4): the right-hand
side has ∆v = n and therefore can be split into two terms:

(
[
1n−2] , 1)n = (

[
1n−2]

n−2 , 1)n+(
[
1n−2]

n−1 , 1)n . (C.6)

The first term can be written down explicitly: [1n−2]n−2 is
just Sn−2, whose expression is given in (B.19). As for the
second term, it has the same structure as Sn−2, but one
order of ∆v higher. It is useful to introduce a new symbol
for [1n]n+1:

S1
n := [1n]n+1 = n!

n∑
n0=1

[
1

(n − n0)!
d(n0+1)

n0 n0
Sn−n0

]
,

(C.7)

where the latter expression can be obtained with the fol-
lowing reasoning: one starts by expanding [n] according
to (B.6), and obtains

[1n] =
∑

{nimi=n}
n!

∏
i

1
(ni!)mimi!

(
(
[
1ni−1] , 1)

)mi

.

(C.8)
The product [1n] contains terms of arbitrary ∆v, starting
from n, but here we are interested only in the part with
∆v = n + 1. The part with minimal ∆v = n is obtained
when all brackets have their minimal ∆v = ni – the part
with ∆v = n+1 is obtained when only one of the brackets
has ∆v = ni + 1 and all others the minimal one:

[1n]n+1 =
∑

{n0+nimi=n}

n!
n0!

([
1n0−1] , 1

)
n0+1 (C.9)

×
∏

i

1
(ni!)mimi!

(([
1ni−1] , 1

)
ni

)mi

.

After substituting all the brackets with the corresponding
d, and grouping together all the dn into Si one obtains
the result in (C.7). The expression for d

(n)n−1
n−1 can now be

given explicitly in full:

(n − 1)!d(n)
n−1 n−1 = (Sn−2, 1)n +

(
S1

n−2, 1
)
n

. (C.10)

Note that this is again a recursive formula: d
(n)
n−1 n−1 is

expressed in terms of dm with m ≤ n − 2 and d
(m)
m−1 m−1

with m ≤ n − 1.
We now come to the second equation in (C.4): the new

object which we have to deal with is [1j21k]j+2+k. One
can express this as follows:

[
1j21k

]
j+2+k

=
j∑

j1=0

(
j

j1

)[
(Sj1 , 2)j1+2 Sj+k−j1 (C.11)

+
k∑

k1=1

(
k

k1

)([
1j121k1−1], 1)

j1+k1+2Sj+k−j1−k1

]
.

The derivation of this formula follows from the observation
that when we split the product on the left-hand side into
subsets according to (B.6), only one of the subsets will
contain a 2 – the various terms differ by the number of 1s
to the left and right of the 2 in the same subset. Moreover,
since we are interested here only in the part with minimal
∆v, the quantity that multiplies the subset with a 2 can
be expressed as a Sn. The combinatorial factors are then
easily obtained.

We can now insert (C.11) back into (C.4) and get

n!d(n)
n n−1 = (Sn−2, 2)n

+
n−3∑
j=0

(n − 1 − j)
j∑

j1=0

(
j

j1

)
((Sj1 , 2)Sn−3−j1 , 1)n

+
n−4∑
j=0

(n − 1 − j)
j∑

j1=0

(
j

j1

) n−3−j∑
k1=1

(
n − 3 − j

k1

)
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× (([
1j121k1−1] , 1

)
Sn−3−j1−k1 , 1

)
n

. (C.12)

One can again use (C.11) to simplify further the last term,
and one gets

n!d(n)
n n−1 = (Sn−2, 2)n

+
n−3∑
j=0

(n − 1 − j)
j∑

j1=0

(
j

j1

)
((Sj1 , 2)Sn−3−j1 , 1)n

+
n−4∑
j=0

(n − 1 − j)
j∑

j1=0

(
j

j1

) n−3−j∑
k1=1

(
n − 3 − j

k1

)

×
j1∑

j2=0

(
j1
j2

)
(((Sj2 , 2)Sj1+k1−1−j2 , 1)Sn−3−j1−k1 , 1)n

+
n−5∑
j=0

(n − 1 − j)
j∑

j1=0

(
j

j1

) n−3−j∑
k1=1

(
n − 3 − j

k1

)

×
j1∑

j2=0

(
j1
j2

) k1−1∑
k2=1

(
k1 − 1

k2

)
(C.13)

× ((([
1j221k2−1], 1)Sj1+k1−1−j2−k2 , 1

)
Sn−3−j1−k1 , 1

)
n
.

One can now use (C.11) as many times as it is needed and
fully eliminate the terms containing [1j21k]. In this manner
one obtains an expression for the subleading poles which is
fully explicit, again in the sense of a recursive formula: to
have leading and subleading poles at �-order n one must
have already worked out all leading and subleading poles
of �-order n′ < n, and insert these as vertices in one- and
two-loop diagrams.

D Renormalization of the effective action

In Sect. 5 we have shown that in order to have the sum
of 1PR contributions to the generating functional auto-
matically finite, order by order in the loop expansion,
one should systematically renormalize the effective actions
Γn[φ, J ] also away from the classical solution. This can al-
ways be done because the divergences of Γn must be local:
to renormalize it is enough to include in the counterterm
basis also terms that vanish at the EoM. In this section
we discuss in some more details how this can be done, and
consider the case of Γn, assuming that all Γk with k < n
have already been renormalized also away from the EoM.
This implies that Z1PR

n is finite, and therefore that Γ̄n is
also finite. We can write a Γn which is finite at the EoM
as

Γn =
n∑

i=1

ε−iΓn i + Γ f
n (ε), Γ̄n i = 0 , (D.1)

with Γ f
n (0) finite. Our argument applies to all Γn i and

to simplify the notation we drop the subscript. Since Γ
vanishes at the EoM, we can write it as

Γ =
∑

n

ĉnXn
r Sr

0 =: XrS
r
0 , (D.2)

with Sr
0 = 0 the classical EoM. We are now interested to

study its behavior away from the EoM, and can conve-
niently do this with a Taylor expansion:

φ = φcl + ξ ⇒ Γ = Γ̄ aξa + O
(
ξ2) . (D.3)

We want to ensure that Γ vanishes also away from the
EoM, and therefore that

Γ̄ a = X̄r∆
ra = 0 , (D.4)

which can only be true if X̄r = 0. This condition can be
easily satisfied by properly adjusting the coefficients ĉn in
front of the counterterms that vanish at the EoM (D.2).
Xr, however, may still be different from zero away from
the EoM:

Xr = XrsS
s
0 , (D.5)

which implies

Γ =
1
2
Γ̄ abξaξb + O

(
ξ3) , Γ̄ ab = X̄rs∆

ra∆sb . (D.6)

Γ ab = 0 implies X̄rs = 0, which can be obtained by tuning
the coefficients of the counterterms that vanish quadrati-
cally at the EoM, and in turn this means

Xrs = XrstS
t
0 , (D.7)

and so on. Note that the expansion in ξ of a term that
vanishes at the EoM contains powers of the inverse prop-
agator ∆: when inserted in 1PR graphs such vertices will
generate local, possibly divergent contributions. By chang-
ing the coefficients in front of the EoM terms one can shift
local contributions from Γn to Z1PR

n .
We stress that the procedure for the renormalization

of Γn outlined above does not need to go on forever. First
of all because at every finite �-order only a finite number
of conditions have to be imposed; cf. (5.5). Moreover, in
any QFT, the EoM must reduce, in a well-defined limit,
to the free-field ones:

Si
0 =

(
� + M2)φi + σijφj = 0 . (D.8)

For dimensional reasons the powers of Si
0 which can be

contained in a counterterm of �-order n is bounded. For
example in a renormalizable theory not more than one
power of Si

0 can appear in a counterterm of any �-order.
In a non-renormalizable theory higher-dimensional inter-
actions are suppressed by powers of an energy scale. This
ordering is usually reflected in the �-ordering, such that at
each order in � only a limited power of Si

0 can appear. In
CHPT, e.g., the EoM are of chiral order two, such that at
�-order one (chiral order four) not more than two powers
of Si

0 are allowed: the condition

Γ i
1 = Γ ij

1 = 0 , (D.9)

ensures that Γ1 is finite, even away from the classical so-
lution. In general, for Γn the chiral counting implies that
there are n + 1 conditions to be imposed:

Γ i1
n = Γ i1i2

n = Γ i1...in+1
n = 0 . (D.10)
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